Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 260: 108734, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490318

RESUMO

Both E. multilocularis and host-derived exosomes are involved in the pathogenic process of alveolar echinococcosis (AE). Exosomes secrete miRNAs that have regulatory roles in host-pathogen interactions in multiple ways. In the present study, we collected and purified supernatants of E. multilocularis cultures, as well as human plasma exosomes. High-throughput sequencing showed the identities of 45 exosomal miRNAs in E. multilocularis. The lengths of these miRNAs ranged from 19 to 25 nucleotides (nt), with the majority (n = 18) measuring 22 nt. Notably, emu-let-7-5p emerged as the most abundant among these miRNAs, with a detected count of 33,097 and also length of 22 nt. Nanoparticle tracking analysis (NTA) showed that the concentration of exosomes in the plasma of AE patients was lower compared to that in the healthy individuals. This result suggested that the concentration of plasma exosomes was able to distinguish AE patients from healthy individuals. Using qRT-PCR to assess the relative expression of 10 miRNAs of E. multilocularis, we showed that the expression of miR-184-3p was downregulated significantly in the exosomes of plasma from AE patients compared to that in the control group. In summary, this study indicates that AE induces a reduction in the concentration of human plasma exosomes, as well as downregulating miR-184-3p in infected individuals.

3.
Huan Jing Ke Xue ; 43(11): 4888-4904, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437061

RESUMO

Since the late 1970s, marine ecotoxicology began to sprout and develop in China. Based on the principles of dose-response relationships, some marine organisms are used in toxicity tests to evaluate the impact of marine pollutants on marine organisms and marine ecosystems. At the early stage, marine ecotoxicological research mainly focused on the bioaccumulation, biomagnification, and biodegradation of traditional pollutants such as heavy metals, radioactive elements, organotin, petroleum hydrocarbons, and pesticides, as well as their toxic effects on survival, growth, and other physiological indicators. With the development of Chinese industry, marine pollution has become increasingly serious. In addition to the traditional marine pollutants, toxicological research has been conducted on emerging pollutants with potential risks to marine ecosystems, such as POPs, emerging organic pollutants, nanomaterials, and microplastics. Moreover, the species of marine organisms used in toxicity testing have become more diverse. The selection of testing organisms is essential for evaluating toxicity correctly. The toxicity tests should be conducted on a variety of organisms from different trophic levels to ensure the comprehensive understanding of the impact of pollutants on marine ecosystems. The major types of marine organisms used in the toxicity testing include marine alga, protozoa, rotifera, annelida, mollusc, echinoderma, arthropoda, cephalopoda, and marine fish, which have been used in the toxicological studies of various marine pollutants. The outcome results can serve as the scientific basis for the ecological risk assessment of marine pollutants and the establishment of seawater quality criteria. It should be noted that the sensitivity of different testing organisms to different types of pollutants is quite diverse. Therefore, in addition to conducting a battery of tests on a variety of species which play important roles in marine ecosystems, elucidating the toxic mechanisms in different species is also important for marine ecotoxicological studies. The application of the above-mentioned organisms in marine ecotoxicology research in recent years is briefly reviewed here. Particularly, the six commonly used marine model species (Skeletonema costatum, Euplotes vannus, oysters, sea urchins, Tigriopus japonicus, and Oryzias melastigma) used in toxicity testing are introduced in detail.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Ecotoxicologia , Ecossistema , Plásticos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Testes de Toxicidade , Organismos Aquáticos
4.
Nat Commun ; 13(1): 6730, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344528

RESUMO

Growth of the prominent nitrogen-fixing cyanobacterium Trichodesmium is often limited by phosphorus availability in the ocean. How nitrogen fixation by phosphorus-limited Trichodesmium may respond to ocean acidification remains poorly understood. Here, we use phosphate-limited chemostat experiments to show that acidification enhanced phosphorus demands and decreased phosphorus-specific nitrogen fixation rates in Trichodesmium. The increased phosphorus requirements were attributed primarily to elevated cellular polyphosphate contents, likely for maintaining cytosolic pH homeostasis in response to acidification. Alongside the accumulation of polyphosphate, decreased NADP(H):NAD(H) ratios and impaired chlorophyll synthesis and energy production were observed under acidified conditions. Consequently, the negative effects of acidification were amplified compared to those demonstrated previously under phosphorus sufficiency. Estimating the potential implications of this finding, using outputs from the Community Earth System Model, predicts that acidification and dissolved inorganic and organic phosphorus stress could synergistically cause an appreciable decrease in global Trichodesmium nitrogen fixation by 2100.


Assuntos
Cianobactérias , Trichodesmium , Nitrogênio/farmacologia , Concentração de Íons de Hidrogênio , Água do Mar/química , Fixação de Nitrogênio , Fósforo/farmacologia , Homeostase , Polifosfatos , Oceanos e Mares
5.
Front Microbiol ; 13: 953846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003932

RESUMO

Hepatic alveolar echinococcosis (HAE) is a zoonotic parasitic disease caused by the larvae of Echinococcus multilocularis. Because of its characteristics of diffuse infiltration and growth similar to tumors, the disability rate and mortality rate are high among patients. Although surgery (including hepatectomy, liver transplantation, and autologous liver transplantation) is the first choice for the treatment of hepatic alveolar echinococcosis in clinic, drug treatment still plays an important and irreplaceable role in patients with end-stage echinococcosis, including patients with multiple organ metastasis, patients with inferior vena cava invasion, or patients with surgical contraindications, etc. However, Albendazole is the only recommended clinical drug which could exhibit a parasitostatic rather than a parasitocidal effect. Novel drugs are needed but few investment was made in the field because the rarity of the cases. Drug repurposing might be a solution. In this review, FDA-approved drugs that have a potential curative effect on hepatic alveolar echinococcosis in animal models are summarized. Further, nano drug delivery systems boosting the therapeutic effect on hepatic alveolar echinococcosis are also reviewed. Taken together, these might contribute to the development of novel strategy for advanced hepatic alveolar echinococcosis.

6.
Sci Adv ; 8(5): eabl7564, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119922

RESUMO

Nitrogen fixation is critical for the biological productivity of the ocean, but clear mechanistic controls on this process remain elusive. Here, we investigate the abundance, activity, and drivers of nitrogen-fixing diazotrophs across the tropical western North Pacific. We find a basin-scale coherence of diazotroph abundances and N2 fixation rates with the supply ratio of iron:nitrogen to the upper ocean. Across a threshold of increasing supply ratios, the abundance of nifH genes and N2 fixation rates increased, phosphate concentrations decreased, and bioassay experiments demonstrated evidence for N2 fixation switching from iron to phosphate limitation. In the northern South China Sea, supply ratios were hypothesized to fall around this critical threshold and bioassay experiments suggested colimitation by both iron and phosphate. Our results provide evidence for iron:nitrogen supply ratios being the most important factor in regulating the distribution of N2 fixation across the tropical ocean.

7.
iScience ; 25(1): 103587, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005537

RESUMO

Trichodesmium, a globally important, N2-fixing, and colony-forming cyanobacterium, employs multiple pathways for acquiring nutrients from air-borne dust, including active dust collection. Once concentrated within the colony core, dust can supply Trichodesmium with nutrients. Recently, we reported a selectivity in particle collection enabling Trichodesmium to center iron-rich minerals and optimize its nutrient utilization. In this follow-up study we examined if colonies select Phosphorus (P) minerals. We incubated 1,200 Trichodesmium colonies from the Red Sea with P-free CaCO3, P-coated CaCO3, and dust, over an entire bloom season. These colonies preferably interacted, centered, and retained P-coated CaCO3 compared with P-free CaCO3. In both studies, Trichodesmium clearly favored dust over all other particles tested, whereas nutrient-free particles were barely collected or retained, indicating that the colonies sense the particle composition and preferably collect nutrient-rich particles. This unique ability contributes to Trichodesmium's current ecological success and may assist it to flourish in future warmer oceans.

8.
Ecotoxicol Environ Saf ; 223: 112605, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371453

RESUMO

The global phase-out has decreased the use of polybrominated diphenyl ethers (PBDEs), thereby, rapidly increasing the production and use of their important surrogates, organophosphorus flame retardants (OPFRs). Currently, OPFRs are often found at higher levels in the environments compared to PBDEs. Although the two typical OPFRs, tris (1,3-dichloroisopropyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP), have been frequently detected in marine environments with significant concentrations, their toxicity to marine organisms remains unknown. We used Oryzias melastigma to investigate and compare their developmental toxicity in marine organisms through two-generational chronic exposure. The results showed that TDCIPP and TPhP exposure shortened the body length and length of the pectoral fin of O. melastigma. Both TDCIPP and TPhP deformed the pectoral fins in the 1st fry and caused spinal curvature in adult fish. Therefore, these two chemicals may pose potential risks to marine fish and marine ecosystems. Further studies suggested that although these two chemicals caused similar developmental bone toxicity, they had different modes of modulating the expression of bone developmental genes such as, bmp4, bmp2 and runx2.


Assuntos
Retardadores de Chama , Oryzias , Animais , Ecossistema , Retardadores de Chama/toxicidade , Organofosfatos , Compostos Organofosforados
9.
Aquat Toxicol ; 232: 105742, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33460951

RESUMO

Organic ultraviolet filters are widely used in personal care products. 4-methylbenzylidene camphor (4-MBC) is one of the most frequently used UV filters. Due to its widespread usage 4-MBC has been detected at high concentrations in offshore waters. Previous toxicological studies have suggested that 4-MBC might induce much higher toxicity in marine organisms than freshwater species. To explore the effects of salinity on 4-MBC toxicity, the marine copepod Tigriopus japonicus was used as the model species, as it plays an important role in marine ecosystems and can be adapted to a wide range of salinity conditions. T. japonicus were adapted to three different salinity conditions (i.e., 20, 30 and 40 ppt) prior to exposure to 0, 1, and 5 µg L-1 4-MBC for multiple generations (F0-F3). Results showed that environmentally relevant concentrations of 4-MBC had toxic effects on T. japonicus and therefore, can pose a significant risk to marine copepods in the natural environment. In addition, increasing salinity levels increased the lethal, developmental and reproductive toxicities of 4-MBC in T. japonicus. This was because that higher salinity levels increased the uptake rate constant and bioconcentration factor of 4-MBC and also further exacerbated the oxidative stress induced by exposure to 4-MBC in T. japonicus. Our study demonstrated that understanding how salinity affects the toxicity of 4-MBC is important for accurate assessment of the risk of 4-MBC in the aquatic environments.

10.
Nat Commun ; 11(1): 3511, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665599

RESUMO

In the context of continuously increasing anthropogenic nitrogen inputs, knowledge of how ammonia oxidation (AO) in the ocean responds to warming is crucial to predicting future changes in marine nitrogen biogeochemistry. Here, we show divergent thermal response patterns for marine AO across a wide onshore/offshore trophic gradient. We find ammonia oxidizer community and ambient substrate co-regulate optimum temperatures (Topt), generating distinct thermal response patterns with Topt varying from ≤14 °C to ≥34 °C. Substrate addition elevates Topt when ambient substrate is unsaturated. The thermal sensitivity of kinetic parameters allows us to predict responses of both AO rate and Topt at varying substrate and temperature below the critical temperature. A warming ocean promotes nearshore AO, while suppressing offshore AO. Our findings reconcile field inconsistencies of temperature effects on AO, suggesting that predictive biogeochemical models need to include such differential warming mechanisms on this key nitrogen cycle process.


Assuntos
Amônia/metabolismo , Mudança Climática , Microbiota/fisiologia , Oxirredução , Temperatura
11.
Photosynth Res ; 142(1): 17-34, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31077001

RESUMO

Growth and dinitrogen (N2) fixation of the globally important diazotrophic cyanobacteria Trichodesmium are often limited by iron (Fe) availability in surface seawaters. To systematically examine the combined effects of Fe limitation and ocean acidification (OA), T. erythraeum strain IMS101 was acclimated to both Fe-replete and Fe-limited concentrations under ambient and acidified conditions. Proteomic analysis showed that OA affected a wider range of proteins under Fe-limited conditions compared to Fe-replete conditions. OA also led to an intensification of Fe deficiency in key cellular processes (e.g., photosystem I and chlorophyll a synthesis) in already Fe-limited T. erythraeum. This is a result of reallocating Fe from these processes to Fe-rich nitrogenase to compensate for the suppressed N2 fixation. To alleviate the Fe shortage, the diazotroph adopts a series of Fe-based economic strategies (e.g., upregulating Fe acquisition systems for organically complexed Fe and particulate Fe, replacing ferredoxin by flavodoxin, and using alternative electron flow pathways to produce ATP). This was more pronounced under Fe-limited-OA conditions than under Fe limitation only. Consequently, OA resulted in a further decrease of N2- and carbon-fixation rates in Fe-limited T. erythraeum. In contrast, Fe-replete T. erythraeum induced photosystem I (PSI) expression to potentially enhance the PSI cyclic flow for ATP production to meet the higher demand for energy to cope with the stress caused by OA. Our study provides mechanistic insight into the holistic response of the globally important N2-fixing marine cyanobacteria Trichodesmium to acidified and Fe-limited conditions of future oceans.


Assuntos
Ferro/metabolismo , Proteoma , Água do Mar/química , Trichodesmium/metabolismo , Aclimatação , Carbono/metabolismo , Contagem de Células , Tamanho Celular , Clorofila A/metabolismo , Concentração de Íons de Hidrogênio , Fixação de Nitrogênio , Oceanos e Mares , Fotossíntese , Proteômica , Estresse Fisiológico
12.
Nat Commun ; 10(1): 1521, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944323

RESUMO

The response of the prominent marine dinitrogen (N2)-fixing cyanobacteria Trichodesmium to ocean acidification (OA) is critical to understanding future oceanic biogeochemical cycles. Recent studies have reported conflicting findings on the effect of OA on growth and N2 fixation of Trichodesmium. Here, we quantitatively analyzed experimental data on how Trichodesmium reallocated intracellular iron and energy among key cellular processes in response to OA, and integrated the findings to construct an optimality-based cellular model. The model results indicate that Trichodesmium growth rate decreases under OA primarily due to reduced nitrogenase efficiency. The downregulation of the carbon dioxide (CO2)-concentrating mechanism under OA has little impact on Trichodesmium, and the energy demand of anti-stress responses to OA has a moderate negative effect. We predict that if anthropogenic CO2 emissions continue to rise, OA could reduce global N2 fixation potential of Trichodesmium by 27% in this century, with the largest decrease in iron-limiting regions.


Assuntos
Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Trichodesmium/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Simulação por Computador , Metabolismo Energético/efeitos dos fármacos , Ferredoxinas/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Modelos Teóricos , Oceanos e Mares , Água do Mar/química , Água do Mar/microbiologia , Trichodesmium/efeitos dos fármacos , Trichodesmium/enzimologia , Trichodesmium/crescimento & desenvolvimento
13.
J Phycol ; 55(3): 521-533, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30849184

RESUMO

Although increasing the pCO2 for diatoms will presumably down-regulate the CO2 -concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 µatm, pH 8.1), carbonated (pCO2 800 µatm, pH 8.1), acidified (pCO2 400 µatm, pH 7.8), and OA (pCO2 800 µatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down-regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2 , than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross-membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.


Assuntos
Diatomáceas , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fotossíntese , Água do Mar
14.
Sheng Wu Gong Cheng Xue Bao ; 34(5): 785-793, 2018 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-29893086

RESUMO

An in vitro synthesized random ssDNA library was subjected to 12 rounds of selection against anti-screening cells and sieving cells by SELEX. Normal and inflammatory cervical exfoliation cells were selected as anti-screening cells, and the cervical exfoliation cells of low-grade squamous intraepithelial lesion (CIN1), high-grade squamous intraepithelial lesion (CIN2, CIN3) and cervical carcinoma were selected as sieving cells during the screening process. Then, the highly specific aptamer CIN-Ap4 was established by the analysis of the specificity, affinity and cell immunofluorescence, which can be used as biomarker for Cervical Intraepithelial Neoplasia. Prime Premier 5.0 was applied to design a random ssDNA library. According to the fixed sequence at both ends of the library, a pair of primers were designed and synthesized. At the same time, the optimal annealing temperature, cycle times and primer concentration ratio of PCR procedure were selected. The results under the optimal condition are shown as follows. In the 50 µL reaction system, the optimum reaction conditions of symmetry PCR are as follows: annealing temperature is 49.5 ℃, number of cycles is 15. The optimal reaction conditions of indirect asymmetric PCR are as follows: the primer concentration ratio is 80:1, and the number of cycles is 35. The experiment proves that the oligonucleotide library is constructed successfully, and the highly specific dsDNA and ssDNA can be obtained under optimal PCR conditions with good repeatability, which establishes the foundation for the further exploration and experimentation.


Assuntos
Aptâmeros de Nucleotídeos/genética , Técnica de Seleção de Aptâmeros , Displasia do Colo do Útero/genética , Neoplasias do Colo do Útero/genética , Biomarcadores Tumorais/genética , DNA de Cadeia Simples/genética , Feminino , Biblioteca Gênica , Humanos
15.
Nat Commun ; 9(1): 915, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500422

RESUMO

Phytoplankton assimilation and microbial oxidation of ammonium are two critical conversion pathways in the marine nitrogen cycle. The underlying regulatory mechanisms of these two competing processes remain unclear. Here we show that ambient nitrate acts as a key variable to bifurcate ammonium flow through assimilation or oxidation, and the depth of the nitracline represents a robust spatial boundary between ammonium assimilators and oxidizers in the stratified ocean. Profiles of ammonium utilization show that phytoplankton assemblages in nitrate-depleted regimes have higher ammonium affinity than nitrifiers. In nitrate replete conditions, by contrast, phytoplankton reduce their ammonium reliance and thus enhance the success of nitrifiers. This finding helps to explain existing discrepancies in the understanding of light inhibition of surface nitrification in the global ocean, and provides further insights into the spatial linkages between oceanic nitrification and new production.

16.
Aquat Toxicol ; 194: 94-102, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29172130

RESUMO

One of the most widely used organic UV filters, 4-methylbenzylidene camphor (4-MBC), is present at high concentrations in offshore waters. The marine copepod Tigriopus japonicus was exposed to different concentrations of 4-MBC (i.e., 0, 0.5, 1, 5 and 10µgL-1) for 4 consecutive generations (F0-F3) to evaluate the impact of 4-MBC on marine ecosystems. The results showed that in the F0 generation, 4-MBC caused significant lethal toxicity in T. japonicas at concentrations of 5 and 10µgL-1 and the nauplii were more sensitive to 4-MBC toxicity than the adults. However in the F1-F3 generations, 4-MBC exposure did not affect the survival rate. The hatching rate and the developmental duration from the nauplii to the copepodite (N-C) and from the nauplii to adult (N-A) decreased significantly in the F1-F2 generations and in the F2-F3 generations, respectively, even at the lowest exposure concentration (0.5µgL-1). In the subsequent two generations (i.e., the F4-F5 generations) of recovery exposure in clean seawater, the growth rates of the original 4-MBC exposure groups were still faster than the control in both the N-C and N-A stages, suggesting possible transgenerational genetic and/or epigenetic changes upon chronic 4-MBC exposure. The expression of the ecdysone receptor gene was up-regulated by 4-MBC, which was consistent with the decrease of the N-C/N-A duration. In addition, 4-MBC may induce oxidative stress and trigger apoptosis in T. japonicas, resulting in developmental, reproductive and even lethal toxicity. A preliminary risk assessment suggested that under environmentally realistic concentrations, 4-MBC had significant potential to pose a threat to marine crustaceans and marine ecosystems.


Assuntos
Cânfora/análogos & derivados , Copépodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Cânfora/toxicidade , Copépodes/crescimento & desenvolvimento , Copépodes/fisiologia , Feminino , Longevidade/efeitos dos fármacos , Reprodução/efeitos dos fármacos
17.
Sci Rep ; 7(1): 17601, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242536

RESUMO

Recent studies have demonstrated that dinitrogen fixation can be important in nutrient-rich coastal upwelling regions. During a cruise to the Taiwan Strait in summer 2015, we found that the nitrogen fixation rate in surface waters ranged from below detection limits to 7.51 nmol N L-1 d-1. Higher rates accompanied by low N:P ratios (1-10.4:1) associated with low temperatures occurred in the surface water where the Pingtan and the Dongshan upwelling regions met (the NE area). In contrast, insignificant rates were observed in the southwest area of the Dongshan upwelling region (the SW area) with sufficient N and deficient P, and therefore high N:P ratios (e.g., >43 at station C2) due largely to the influence of the Pearl River plume. Diatom-associated symbionts (het-1; 104-106 copies L-1) that are efficient in organic matter export were found to dominate the other diazotrophic groups that were surveyed, which may represent a direct relationship between new nitrogen input and export in the upwelling regions. Our results suggest a hydrographical influence on the diazotroph community and N2 fixation in coastal upwelling regions.


Assuntos
Fixação de Nitrogênio , Meio Ambiente , Genes Bacterianos/genética , Nutrientes/análise , Fósforo/análise , Taiwan , Temperatura , Água/química
18.
Science ; 357(6356)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912214

RESUMO

Hutchins et al question the validity of our results showing that under fast growth conditions, the beneficial effect of high CO2 on Trichodesmium is overwhelmed by the deleterious effect of the concomitant decrease in ambient and cellular pH. The positive effect of acidification reported by Hutchins and co-workers is likely caused by culture conditions that support suboptimal growth rates.


Assuntos
Fixação de Nitrogênio , Trichodesmium , Cianobactérias , Oceanos e Mares
19.
Science ; 356(6337): 527-531, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28450383

RESUMO

Acidification of seawater caused by anthropogenic carbon dioxide (CO2) is anticipated to influence the growth of dinitrogen (N2)-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N2-fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO2 Acidification resulted in low cytosolic pH and reduced N2-fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification.


Assuntos
Fixação de Nitrogênio , Nitrogênio/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Trichodesmium/crescimento & desenvolvimento , Trichodesmium/metabolismo , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Deficiências de Ferro , Nitrogenase/metabolismo , Oceanos e Mares , Bombas de Próton/metabolismo
20.
Aquat Toxicol ; 188: 1-9, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28437657

RESUMO

The three major hexabromocyclododecane (HBCD) diastereoisomers, i.e. α-, ß- and γ-HBCD, have distinct physical and chemical properties that may potentially result in different levels of bioaccumulation and toxicity in aquatic organisms. To assess the impact of diastereomeric variation in HBCDs, the marine copepod Tigriopus japonicus was exposed to α-, ß- and γ-HBCD in isolation. Results showed that all the three diastereoisomers had a similar potency to cause growth delay in T. japonicas. Variation was observed in the overall survival rate with exposure to α- and ß-HBCD, and this resulted in significantly higher lethal toxicity in T. japonicas than that with exposure to γ-HBCD. Exposure to α-, ß- and γ-HBCD led to the generation of ROS in T. japonicas, a possibly toxic mechanism. Both α- and ß-HBCD showed a higher potential to induce oxidative stress, which may be a factor in the higher lethal toxicity observed with α- and ß-HBCD exposure. It is of note that T. japonicus was found to be more sensitive to all three diastereoisomers in the F1 generation than in the F0 generation. The bioconcentration potential of HBCD diastereoisomers can be ranked in the order α-HBCD>γ-HBCD>ß-HBCD and was found to be higher in T. japonicus than has been reported for fish species.


Assuntos
Copépodes/efeitos dos fármacos , Hidrocarbonetos Bromados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Copépodes/metabolismo , Hidrocarbonetos Bromados/química , Hidrocarbonetos Bromados/farmacocinética , Estresse Oxidativo , Estereoisomerismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...